Laser hardening, or laser beam hardening has been in use by industry for approximately ten years. Among others, this boundary layer process also uses directly radiating and fiber-coupled high-performance diode lasers (HPDL). These operate in a relative short-wave spectrum. This results in notably more efficient energy absorption in the material when compared to other laser beam sources.
The laser hardening process involves a highly targeted, or partial, application of thermal energy into the component. The amount of thermal energy is significantly lower than with other processes. The benefit is that the component exhibits non-significant warping. This consequently limits, or even eliminates post-machining on the hardened component. In addition to high energy-efficiency, other benefits of laser hardening include short processing cycles, which makes the hardened components readily available for subsequent processing steps. Other features include the significant environmental compatibility and cleanliness. Coolant media, such as oil or water, are unnecessary. The only condition is the direct, unrestricted access of the laser beam to the component surface.
A real-world example
Basically, any surface made from steel castings, construction, alloyed and tool steels, but also various cast iron grades, such as cast iron with flake or spheroidal graphite can be hardened. For instance, the grooves on the outrunner of an electrical motor, which also functions as the traction wheel on an elevator, were hardened on location on a mobile hardening system as service. Grooves are machined into the traction wheel into which the elevator cable is clamped and retained. To prevent the grooves from wearing too quickly, the groove flanks are once again hardened on both sides.